[image:]
[image:]

EENG 484: Configure Block RAM
The Zynq7000 chip comes with a lot of built in hardware. This specialized hardware is called Intellectual Property or (IP). You can access the Xilinx IP for the Zynq using the following process – we will only use it for block RAMs, but there are other options in there and I invite you to look around.
You will need block RAM to store sampled data so that the scopeFace component can display it on the oscilloscope. Reating the block RAM is straightforward using the following steps. Start by opening the IP catalog using the link in the Project Manager area on the left of the screen.
Search for BRAM in the IP Catalog tab. Click on the Block Memory Generator line.
[image:]

To configure the Ram, step through the tabs at the top of Customize IP pop-up.

Basic:	Select Simple Dual Port RAM
[image:]
Port A: Change the Port A depth to 1024 and set any options shown below.
[image:]

Port B: Set any options shown below.
[image:]

Other Options: Leave the defaults alone

Click OK to complete adding this memory to your design. You can instantiate this memory as many times as needed.
Since you will have to interface to the block RAM, you will need to put its component declaration in your package file. To get the entity definition of the block memory:
· Go to Sources in the Project Manager area and expand the blk_mem_gen_0 unit
· Double click on the blk_mem_gen_0_arch
· The entity will show up in the text editing area

[image:]

1

1

10

image3.png
#' Customize IP

Block Memory Generator (8.4)

@ Documentation = IP Location C Switch to Defaults

IPSymbol Power Estimation

b
b

+ BRAM_PORTA
+ BRAM_PORTB

Component Name blk_mem_gen_0

Basic PortAOptions PortBOptions Other Options Summary

Memory Size
PortAWidth |16 Range: 1 o 4608 (bits)
Port A Depth 1024 Range: 2 to 1048576

The Width and Depth values are used for Write Operations in Port A

Operating Mode | No Change v | Enable Port Type Use ENAPIn v

Port A Optional Output Registers

Port A Output Reset Options
Output Reset Value (Hex) 0

Reset Priority | CE (Latch or Register Enable)

READ Address Change A

image4.png
#' Customize IP

Block Memory Generator (8.4)

@ Documentation = IP Location C Switch to Defaults

IPSymbol Power Estimation

Jil+ erantporTa
l[+ eram_porTe

Component Name blk_mem_gen_0

Basic PortAOptions | PortBOptions Other Options Summary

Memory Size

Port B Width | 16 v

Port B Depth: 1024
The Width and Depth values are used for Read Operation in Port B

Operating Mode Wite First Enable Port Type ~ Use ENB Pin v
Port B Optional Output Registers
[v) primitives Output Register () Core Output Register

() ReGces Pin

Port B Output Reset Options
() RSTB Pin (set/reset pin) ~ Output Reset Value (Hex) 0

Reset Priority | CE (Latch or Register Enable)

READ Address Change B

image5.png
¢ 1ab03AcquireToHDMI - [C:/Users/chris/Dropbox/Mycourses/EENGA498/VHDL/lab03Acquire ToHDMI/lab03AcquireToHDMLpr] - Vivado 2022.1 - X
File Edit Flow Tools Reports Window Layout View Help Q- Quick Access Ready
T ¥ == Default Layout v
PROJECT MANAGER - lab03AcquireToHDMI ? X
v PROJECT MANAGER
2 || Sources Project Summary x| IPCatalog x| blk_mem_gen Ovhd x acquircToHDMI packagevhd* x 200
£ Settings £
g T ¢ + x/Mycourses/EENG498/VHDL/Iab03AcquireToHDMI/lab03AcquireToHDMI.gen/sources_1/ip/blk_mem_gen_0/synth/blk_mem_gen 0 %
Add Sources £
s
La Templat. = Design Sources (5) Q B m Q Read-only &
nguage Templates 4 > @ = acquireToHDMI(behavion) (acquireToHDMIvhd) (6) . AN
s 511
T IP Catalog 3 8 blk_mem_gen_0 (blk mem_gen_0.ci) (1) 52 | LrsRamy ieee;
> @ plk_mem_gen_0(blk mem_gen_0_arch) (blk mem_gen_0vhd) (1) 53 | USE ieee.std logic_1164.ALL;
v IPINTEGRATOR ® genericAdder(behavior) (genericAddervhd) 54 | USE feee.numeric std.ALL;
55 !
Create Block Design @ genericAdderSubtractor(behavior) (genericAdderSubtractorvhd) Se | LIBRaRY bik_mem gen ve_s_S;
@ genericMux2x1 (behavior) (genericMux2x.vhd) 57 | USE blk mem gen v8_4_5.blk mem gen v8_4 5;
Open Block Design Constraints se |
Generate Block Design Simulation Sources (5) @ | eomr (
Utilty Sources 61 | clka : IN STD_LOGIC;
62 | ena : IN STD_LOGIC;
v SIMULATION : -
= wea : IN STD_LOGIC_VECTOR(O DOWNTO 0);
Run Simulation [addra : IN STD_LOGIC_VECTOR(9 DOWNTO 0) ;
€5 | dina : IN STD_LOGIC VECTOR(15 DOWNTO 0);
66 ! clkb : IN STD_LOGIC;
v RTLANALYSIS 67 ! enb : IN STD_LoGIC;
€8 | addrb : IN STD_LOGIC_VECTOR(S DOWNTO 0);
> Open Elaborated Design 65 ! doutb : OUT STD_LOGIC_VECTOR (1S DOWNTO 0)
700)
o SyNTHESSS 71 | END blk_mem_gen_0;
72 1
P Run Synthesis 73 | ARCHITECTURE blk mem_gen_0_arch OF blk_mem gen 0 IS
74 | ATTRIBUTE DowngradeIPIdentifiedWarnings : STRING;
> Open Synthesized Design 75 | ATTRIBUTE DowngradeIPIdentifiedWarnings OF blk mem gen 0_arch: ARCHITECTURE IS “yes";
76 | COMPONENT blk mem_gen v8_4_5 IS

¥ IMPLEMENTATION
» Run Implementation

> Open Implemented Design

~ PROGRAM AND DEBUG

¥i Generate Bitstream

> Onen Hardware Mananer

77

Hierarchy | IPSources Libraries Compile Order
TelConsole | Messages |Log |Reports | DesignRuns x

Q = 2 + %

Name Constraints Status WNS TNS WHS THS
v 1 synth 1 (active) constrs_1 Not started

cENERTO (

WBSS TPWS Total Power Failed Routes Methodology ~RQA Score QoR Suggestions LUT FF BRAM

URAI
~

v

>

image1.png
Eile Edit Flow Tools

D B X b,

o s

v PROJECT MANAGER
£ Settings
Add Sources
Language Templates

TF P Catalog

v 1P INTEGRATOR
Create Block Design
Open Block Design

Generate Block Design

v SIMULATION

Run Simulation

v RTLANALYSIS

> Open Elaborated Design

v SYNTHESIS
P Run Synthesis

> Open Synthesized Design

v IMPLEMENTATION
» RunImplementation

> Open Implemented Design

~ PROGRAM AND DEBUG

¥i Generate Bitstream

¢ 1ab03AcquireToHDMI - [C:/Users/chris/Dropbox/Mycourses/EENGA498/VHDL/lab03Acquire ToHDMI/lab03AcquireToHDMLpr] - Vivado 2022.1 - X
Reports Window Layout View Help | @ QuickAccess -
T ¥ == Default Layout v
? X
A
Sources 2 _ 00 X |Project summary
Q = & + 0 & Cores | Interfaces
= Design Sources (4) Q = & # 4 4
> ® = acquireToHDMI(behavior) (acquireToHDMIvhd) (6)
@ genericAdder(behavior) (genericAdderyvhd) Search: | O BRAM (3 matches)
@ genericAdderSubtractor(behavior) (genericAdderSubtractorvhd) Name
@ genericMuxx1(behavior) (genericMux2xl vhd) = Vivado Repository
> = Constraints Embedded Processing
> = Simulation Sources (4) Memory and Memory Controller
> = Utility Sources % AXI BRAM Controller Production
LMB BRAM Controller Production
Hierarchy | Libraries Compile Order Memories & Storage Elements
RAMs & ROMs & BRAM
(EErniEs ?-00OX % Block Memory Generator
Block Memory Generator -]
-~
Version: 84 (Rev.5)
Interfaces: AXi4 .
Description: The Xilink LogiCORE IP Block Memory
Generator replaces the Dual Port Block Name: Block Memory Generator
Memory and Single Port Block Memory Version: 84 (Rev. 5)
LogiCORES, but is not a direct drop-in Interfacest AXI4
replacement. It should be used in all new
Xilinx designs. The core supports RAM and Description: The Xilinx LogiCORE IP Block Memory Generator replaces the Dual Port Block Memory and Single Port Block Memory
ROM functions over a wide range of widths LogiCORES, but is not a direct drop-in replacement. It should be used in all new Xilinx designs. The core supports RAM
and deoths, Use this core to aenerate block v and ROM functions over a wide range of widths and depths. Use this core to generate block memories with symmetric or
TelConsole | Messages | Log | Reports | Design Runs 2_0n
Q = 2 + %
Name Constraints ~ Status WNS TNS WHS THS WBSS TPWS Total Power Failed Routes Methodology RQAScore QoR Suggestions URAM DSP Start Elapse
~ > synth_1 constrs_1 Not started M
il 1 anctes 1 Nt rtartad V]
NKs >

> Onen Hardware Mananer

image2.png
#' Customize IP X
Block Memory Generator (8.4) ’\.

@ Documentation = IP Location C Switch to Defaults

1P Symbol Power Estimation Component Name blk_mem_gen_0

Basic PortAOptions | PortBOptions OtherOptions Summary

Interface Type () Generate address interface with 32 bits

Memory Type ' Simple Dual Port RAM () Common Clock
ECC Options
ECC Type No ECC v
e
+ Single Bit Error Injection
4 BRAM_PORTA
4 BRAM PORTE
Write Enable

() Byte Write Enable

Byte Size (bits) 9

Algorithm Options
Defines the algorithm used to concatenate the block RAM primitives.
Refer datasheet for more information.

Algorithm | Minimum Area v

Primitive 8k

image6.png
ELECTRICAL ENGINEERING DEPARTMENT

* COLORADO SCHOOL OF MINES

